Presenter:
Joe Rodriguez
Organization/Date:
Orbiter/03-08-05

### Agenda:

- Issue
- Background
- Actions
- Certification Verification Findings
- Consequences of Failure/Problem
- Conclusions/Recommendations
- Acceptability Rationale for OPF Rollout
- Remaining Open Items



| _ |                    |
|---|--------------------|
|   | Presenter:         |
|   | Joe Rodriguez      |
|   | Organization/Date: |
|   | Orbiter/03-08-05   |

#### Issue:

- Failures Have Occurred in Metal Bellows Flex Hoses Used in Sub-systems ECLSS, PRSD, OMS/RCS, MPS and PVD
  - OV-105 Secondary Pressure Control System (PCS) O2 bulkhead flex hose leaked during STS-113 countdown delaying launch. Flex hose was R&R'd, Ref IFA-133-V-01
  - Failure drove the Flex Hose Investigation
- Vehicle Inspections Resulted in PR's Documenting External Damage and Bend Radius Specification Violations
- Suspect Internal Corrosion Found in Spare Metal Bellows Flex Hoses, led to a concern of a possible corrosion threat to Orbiter systems
- Certification Verification Evaluation Questioned Flex Hose Certification



| _ |                    |
|---|--------------------|
|   | Presenter:         |
|   | Joe Rodriguez      |
|   | Organization/Date: |
|   | Orbiter/03-08-05   |

#### **Background:**

- Metal Bellows Flex Hose Failure Analyses Have Identified Bellows Cracks Due to Reverse Bending Fatigue
  - External damage was noted on all of the flex hoses
  - The majority of these flex hose failures are believed to be related to collateral damage due to inadvertent personnel contact
- Failure Analysis History Indicates That Metal Bellows Flex Hoses Are Susceptible to Damage That Will Reduce the Fatigue Life Capability and Cause Premature Failure



Presenter:
Joe Rodriguez
Organization/Date:
Orbiter/03-08-05

### **Metal Bellows Flex Hose Usage**

| SYSTEM  |     | Criticality |     |    | TOTALS |     |
|---------|-----|-------------|-----|----|--------|-----|
|         | 1/1 | 1R2         | 1R3 | 2  | 3      |     |
| MPS     | 4   | 2           |     |    |        | 6   |
| ECLSS   |     | 118         | 17  | 13 | 1      | 149 |
| PVD     |     |             | 8   |    | 2      | 10  |
| RCS     | 28  |             |     |    | 2      | 30  |
| OMS     | 4   |             |     |    |        | 4   |
| FC/PRSD |     | 9           |     |    |        | 9   |
| TOTALS  | 36  | 129         | 25  | 13 | 5      | 208 |



| _ |                    |
|---|--------------------|
|   | Presenter:         |
|   | Joe Rodriguez      |
|   | Organization/Date: |
|   | Orbiter/03-08-05   |

#### **Actions:**

- Performed External Inspections of Vehicle Flex Hoses to Document Damage, Installation Issues and Leakage
  - Flex Hose Vehicle Inspection and Leak Check Requirements were documented and approved via Chits J5670 (ECL,PVD,OMS/RCS, Fuel Cells) and J5669A (MPS)
  - Flex Hose vehicle inspections are complete less the final PVD and MPS inspections which are planned PAD work
  - Tiger team formed to work repairs, replacements and redesigns
  - Summary of the Flex Hose work completed on OV-103 based on vehicle inspections:
    - Replaced 3 ECLSS WCL 1 and 5 WCL 2 Flex Hoses
    - Replaced 3 ATCS Freon Coolant Loop Flex Hoses



Presenter:
Joe Rodriguez
Organization/Date:
Orbiter/03-08-05

#### **Actions:**

- Summary of the Flex Hose work completed on OV-103 based on vehicle inspections: (continued)
  - Converted 15 Potable/Waste Water Flex Hoses to Hard Lines
  - Replaced Primary N2 and Secondary O2 and N2 Flex Hoses
  - Replaced 1 WWM Condensate Flex Hose
  - Replaced all 9 Fuel Cell Flex Hoses
  - Replaced all 10 PVD Flex Hoses
  - Replaced 1 Primary FES Feedline Flex Hose
  - Performed external inspections on all FRC3 flex hoses and internal inspections on 11 out of 28 flex hoses
    - No removals required
  - 5 of 6 MPS Flex Hoses will be replaced with spares at the pad, 1 hose will be re-flown
- Replaced the following Flex hoses as a result of the STS-113 IFA investigation
  - Primary O2 and Aux O2 Supply Flex hoses



| _ |                    |
|---|--------------------|
|   | Presenter:         |
|   | Joe Rodriguez      |
|   | Organization/Date: |
|   | Orbiter/03-08-05   |

#### **Actions:**

- Inspection of Spare Flex Hoses
  - Evaluate for external discrepancies, suspect corrosion, and screen for best spare candidates
  - Total of 533 Spare flex hoses were identified for inspections
    - All have completed external inspections
    - Total of 98 were delivered to vehicles for installation. All were internally inspected, cleaned and passivated
- Sampling of Vehicle Flex Hoses for Suspect Internal Corrosion, Encompassed All Vehicle Sub-systems Flying Flex Hoses, Approximately 200 Flex Hoses
  - Inspections are complete on OV-103 and substantially complete on OV-104/105 with minimal findings
- Statistically Significant Sampling
  - Inspections have been conducted on over half of orbiter program spares and installed flex hoses with minimal findings



| _ |                    |
|---|--------------------|
|   | Presenter:         |
|   | Joe Rodriguez      |
|   | Organization/Date: |
|   | Orbiter/03-08-05   |

#### **Actions:**

- Corrosion Investigation:
  - Suspect corrosion found in spare metal bellows flex hoses raised concern of a possible corrosion threat to orbiter systems
    - Corrosion pitting might contribute to fatigue life reduction
    - Corrosion may be a threat due to perforation of convolute wall
  - Extensive inspection of vehicle and spare flex hoses, evaluation of numerous failure analyses, and review of failure mechanisms ensures that flex hose corrosion is a minimal risk
    - No evidence of corrosion pitting leading to initiation of fatigue failure in over 60 failure analyses
    - Single SCC leakage in fleet history only detectable with mass spec
      - No system effect
    - No evidence of corrosion pitting in vehicle inspections of over 200 flex hoses
      - Vehicle environments are not conducive to corrosion propagation
  - This issue was presented and accepted at the Orbiter DCR



Presenter:
Joe Rodriguez
Organization/Date:
Orbiter/03-08-05

### **Certification Verification Findings:**

- WCL ½" Flex Hoses (MC271-0091)
  - Issue:
    - Previously certified by similarity and did not undergo bend radius testing to magnitude defined in the procurement specification
  - Resolution Plan:
    - Perform Bend Radius Testing to provide:
      - Certification rationale at installation minimum bend radius of 2-inch and service life for low pressure cycling
      - MR rationale for below spec installation minimum bend radius of 1.5-inch
      - Qualitative Assessment of The Effects of Internal Corrosion on flex hose service cyclic fatigue life



| _ |                    |
|---|--------------------|
|   | Presenter:         |
|   | Joe Rodriguez      |
|   | Organization/Date: |
|   | Orbiter/03-08-05   |

### **Certification Verification Findings:**

- Bend Radius Test Results:
  - All 1/2-Inch Flex Hoses Specimens Successfully Passed The 100 Missions Delta Qual
    - Hoses are representative of the WCL system flex hose spares population
    - 100 missions flexure, vibration and pressure cycles
      - 2 inch and above minimum bend radius satisfies specifications requirements
      - 1.5 inch bend radius provides MR rationale for below spec flex hose installations
  - 4 Flex Hose Specimens underwent Destructive Analysis
    - Selected specimens included 2 with reported corrosion and 2 with light or no corrosion
    - No cracks or other possible leak sites identified
    - Anomalies detected included scratches, die marks and suspect corrosion. No significant depth noted



Presenter:
Joe Rodriguez
Organization/Date:
Orbiter/03-08-05

#### **Certification Verification Findings:**

- Fuel Cell Flex Hoses
  - Issue
    - Fuel cell bend radius violations found original Certification not representative of the environment seen in the Orbiter
    - Certification for Orbiter use predominantly based on Orbiter requirements similar to Apollo environments
    - Only a vibe test was performed as part of the Orbiter certification effort. Lack of cumulative damage approach, i.e. not one hose was successfully tested to all loading environments
    - Current analysis of existing test data cannot support greater than 6-mission life
  - Recovery Plan :
    - Replaced all 9 OV-103 hoses to avoid potential cert / qual issues
    - Long term plan is to Develop Delta Qual Test Plan & Cost and present to OPO for approval



Presenter:
Joe Rodriguez
Organization/Date:
Orbiter/03-08-05

### **Certification Verification Findings:**

- Radiator Retract Hose Delta Qual Testing
  - Issue:
    - OV-103 Radiator Retract Mechanism flex hose (ME271-0089 3/4") has a minimum bend radius violation (proc spec 3.75" static, installed measurement 3.125")
    - During PRT review of above issue a certification issue with the qualification test was discovered
    - Test subjected hose to 910 flexure cycles which certifies to 20 missions equivalent based on a scatter factor of 4. OV-103 Flex hoses are out of cert
  - Resolution Plan:
    - Perform a Delta Qual test for 42 Mission cycles
      - Test conditions to include vibration, servicing pressure cycles, operating pressure cycles, launch cycles and flexure cycles
      - TRR is complete and testing is underway
      - Preliminary data review at 32 Mission Cycles ECD 4/08/05
      - Preliminary Results will provide flight rationale for STS-114
      - Certification QSA submittal 4/15/05



| _ | THE COLUMN TWO IS A STREET OF THE CO |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Presenter:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | Joe Rodriguez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | Organization/Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | Orbiter/03-08-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

### **Certification Verification Findings:**

- ECLSS Delta Qualification Testing of ME271-0089/0091
   Flex Hoses
  - Issue:
    - Cert verification evaluation questioned flex hose cerfication
    - Original flex hose qualification for all diameters done by similarity to ¼ inch diameter lines
    - Certification update required for ME271-0089/0091 hoses > ¼" in diameter
  - Resolution Plan:
    - Perform Delta qualification testing for 3/8" & ¾" diameter hoses
      - Pressure cycles, vibration, flexure
      - JSC EP Delta Qual test for 3/8" configurations Complete, Certification QSA submittal ECD 3/14/05
      - Radiator Retract hose Delta Qual testing will satisfy the ¾" requirement- Certification QSA submittal ECD 4/15/05
    - Cert for 5/8" hoses will be enveloped by the 3/8" and 3/4" Delta Quals Certification QSA submittal ECD 4/22/05



| <br>               |
|--------------------|
| Presenter:         |
| Joe Rodriguez      |
| Organization/Date: |
| Orbiter/03-08-05   |

### **Certification Verification Findings:**

- ECLSS ME271-0085 Flex Hoses
  - Issue:
    - Cert verification evaluation questioned the certification of ME271-0085 hoses
      - Flex hoses were not tested to the current vibration and deflection requirements and the as installed configuration
  - Resolution:
    - Pressure vs. growth testing, in-situ modal response testing of OV-104 and OV-105 GN2/GO2 hoses, structural characterization testing, metallurgical analysis, and finite model model analyses to evaluate flex hose displacement to loads and stress sensitivity have shown that the -0085 flex hoses have no certification issue
    - Stress and fatigue analysis of the GN2/GO2 bulkhead penetration flex hoses show that the environmental and operational loads do not affect the required service cyclic life
    - Evaluation results show that all other bulkhead dog-bone configurations meet required cyclic service life
      - Significantly lower pressure on all other flex hoses leads to a 67% reduction in stress



| <br>               |
|--------------------|
| Presenter:         |
| Joe Rodriguez      |
| Organization/Date: |
| Orbiter/03-08-05   |

### **Certification Verification Findings:**

#### RCS Flex Hoses

- Issue:
  - FRCS primary thruster flex hose was originally certified for 5 static deflections
  - 1 static deflection occurs each installation and removal cycle, current preventive maintenance plan increased the number of thruster replacements
  - 3 Flex hoses on FRC3 (F1D, F1L, F2R) have exceeded the originally certified deflections
  - In addition it was noted that the maximum certified bend angle of 45 degrees might be exceeded during thruster installation
- Resolution Plan:
  - Perform Delta Qualification Test to expand allowable operational usage to a static deflection cyclic limit of 25 and bend angle of 90 degrees
  - Complete qualification to include static deflection, pressure surge cycles, deflection and flexure cycling and random vibration
  - Vibration and Static Deflection testing complete (35 flights)
  - Surge testing preparations on-going, TRR completed 2/25/05, phase 1 testing (35 flights) ECD 3/16/05
  - Flexure testing immediately follows Surge testing ECD 3/18/05
  - Certification by QSA ECD 3/30/05



| _ |                    |
|---|--------------------|
|   | Presenter:         |
|   | Joe Rodriguez      |
|   | Organization/Date: |
|   | Orbiter/03-08-05   |

### **Additional RCS Test Program:**

- Bulge Test of RCS Flex Hose
  - Test Objective:
    - Demonstrate margin for a hose which has exceeded the bulge criteria specified in our inspection chit
    - If successful, the results would enhance our confidence that hoses with a bulge less than collar diameter pose no risk to hose integrity
  - Test article selected from White Sands EI-081 Qualification Test Article (F1F position)
    - Manufactured by Metal Bellows in 1978, 100 mission vibration and 34 equivalent mission duty cycles accumulated
    - Bulge exceeds collar diameter (size of bulge: delta diameter of 0.104" above collar unpressurized, collar diameter is 1.1360),
    - Plan to test additional 100 mission equivalent pressure surges (10,000 surge pressure cycles)
  - Results:
    - A leak was noted after 8100 surge pressure cycles. Sub-Car issued 2/24/05
    - FA is in work (ECD 3/18/05), fatigue cracks noted on every convolute crown
    - Boeing Stress & Fluids Analysis analyzing surge pressure cycles (initial results/status 7 Mar 2005)
      - Equivalent firing cycles for tested hose configuration, Effects of common manifold's thruster firings on hose of interest
    - Discussion on effects to our flight rationale are underway



| _ |                    |
|---|--------------------|
|   | Presenter:         |
|   | Joe Rodriguez      |
|   | Organization/Date: |
|   | Orbiter/03-08-05   |

### Consequences of a Flex Hose Failure/Problem:

Sub-system unique based on criticality and hardware functionality

#### **Conclusions/Recommendations:**

- Three major flex hose technical issues have been resolved for STS-114
  - Flex Hose Damage
    - Completed inspections of flex hoses and replacement of damaged hoses
  - Bend Radius Exceeds Specification
    - Bend Radius Testing supports continued use of some flex hoses with bend radii exceeding specification
    - Redesign when required to eliminate bend radius violation not covered by test
  - Flex Hose Corrosion Issue
    - Corrosion investigation concluded a minimal risk, closed at Orbiter DCR
- Completion of Test Programs Will Provide Additional Flight Rationale



Presenter:
Joe Rodriguez
Organization/Date:
Orbiter/03-08-05

#### **Acceptability Rationale for Orbiter Rollout:**

- Vehicle inspections have resulted in a small number of flex hoses that were repaired or replaced
  - Tiger team aggressively worked all issues
  - Final Leak Tests to be performed prior to Flight
- Flex hose bend radius issues have been addressed by a combination of repair and life demonstration testing
- Flex hose corrosion issue was addressed by inspection, sampling, life demonstration testing, and destructive analyses
- Pending the Conclusion of the Identified Forward Work the Flex Hose Issue can be Closed for Flight



#### **STS-114 OPF ROLLOUT REVIEW**

### **Flex Hoses**

Presenter:
Joe Rodriguez
Organization/Date:
Orbiter/03-08-05

Forward Work required for Flight Rationale

| 1 Of Wara 110                                              | K required for    | i ligitt Kationa                                                |                                                                                  |
|------------------------------------------------------------|-------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------|
| Item                                                       | Responsible Party | Est Completion (task)                                           | Current Status                                                                   |
| Radiator Retract Hose Delta Qual Testing                   | Boeing/USA/NASA   | 32 Mission results 4/8/05<br>QSA Submittal 4/15/05              | Testing in Work                                                                  |
| ECLSS Delta Qualification Testing of ME271-0089 Flex Hoses | Boeing/USA/NASA   | 3/8" QSA Submittal<br>03/14/05<br>3/4 "QSA Submittal<br>4/15/05 | JSC EP 3/8" testing complete, 3/4" to be satisfied by Radiator Retract test      |
| ECLSS Delta Qualification Testing of ME271-0091 Flex Hoses | Boeing/USA/NASA   | 3/8" QSA Submittal<br>03/14/05<br>5/8 "QSA Submittal<br>4/22/05 | JSC EP 3/8" testing<br>complete, 5/8" by<br>similarity                           |
| RCS Test Program – Delta Qual Testing                      | Boeing/USA/NASA   | Testing comp 3/18/05,<br>Cert QSA 3/30/05                       | Vibe&static deflection<br>testing (35 flights)<br>complete. Surge testing<br>I/W |
| RCS Bulge Testing                                          | Boeing/USA/NASA   | FA completion 3/18/05                                           | FA in work. Flight<br>Rationale discussions<br>underway                          |
|                                                            |                   |                                                                 | 114rsflex.ppt 3/07/05 6:30 pm                                                    |



Presenter:
Joe Rodriguez
Organization/Date:
Orbiter/03-08-05

# FLEX HOSES BACKUP



#### **STS-114 OPF ROLLOUT REVIEW**

### **Flex Hoses**

Presenter:
Joe Rodriguez
Organization/Date:
Orbiter/03-08-05



#### **STS-114 OPF ROLLOUT REVIEW**

### Flex Hoses Actions Required

Presenter:
Joe Rodriguez
Organization/Date:

Orbiter/03-08-05





### Flex Hoses Actions Required

| _ |
|---|

#### Flex Hose Investigation Test Program: Environmental Sensitivity Testing

- Most probable cause of flex hoses failing below certified or qualified life has been stated to be collateral damage (repeated flexure/deflection) during vehicle maintenance
- The concern would be the combined effect of mission cycles with collateral damage reducing the life of the hoses with potential to produce a failure during flight
- Determine the sensitivity to reduction in hose mission life from collateral damage
  - Determine relative contribution of pressure cycling of bent hoses and simulated ground handling damage to premature failure
  - Cyclic life mission pressure plus vibration
  - Cyclic life Simulated collateral damage
  - Test mission life remaining with various levels of collateral damage
  - All hoses to be destructively analyzed at end of testing
- · Assessment of how installation geometry affects pressure and vibration cyclic life
- Assessment of relative contributions of collateral damage and mission cycles to premature failure
  - Gives indication of Mission life remaining vs. number of collateral damage cycles



#### STS-114 OPF ROLLOUT REVIEW

### Flex Hoses Actions Required

| Presenter:         |
|--------------------|
| Joe Rodriguez      |
| Organization/Date: |
| Orbiter/03-08-05   |
|                    |

#### Flex Hose Investigation Test Program: RCS Test Programs

- Modal Testing
  - Test Objective is to determine whether the FRCS flex hoses are susceptible to low frequency vibration by identifying the natural frequencies of the flex hose over a range of installation angles from 0 to 45 degrees
  - Test articles shipped to Huntington Beach
    - Pre-test leak check resulted in hose failure (CAR AE2807)
    - Replacement hose shipped and received 9/04
    - Technical difficulties have delayed completion (Data Acquisition)
    - Expect to resume testing after completion of Delta Qual testing
- Failure Analysis and Evaluation
  - External leakage detected during pre-test leak check of hose for Delta Qualification
  - F/A determined leakage was due to external corrosion (Boeing Lab record Case #307608)
    - Corrosion due to chlorides root cause not identified
  - Failure of hose most likely due to failure of process or failure to follow process
    - Most probable cause is isolated case of poor control of etchant
  - Sub-CAR AE2807-012 authorizes destructive evaluation of 5 hoses produced during production run to determine if failure is unique
    - Internal and external inspection, Leak and proof chiefle ppt 3/07/05 6:30 pm



Presenter:
Joe Rodriguez
Organization/Date:
Orbiter/03-08-05

### MPS LO2 Disconnect Flex Hoses





Presenter:
Joe Rodriguez
Organization/Date:
Orbiter/03-08-05

### MPS LO2 Disconnect Flex Hoses



1/4 IN. MANIFOLD SENSE LINE 3/8 IN. PNEUMATIC SUPPLY LINE 1/2 IN. MANIFOLD REPRESS LINE



Presenter:
Joe Rodriguez
Organization/Date:
Orbiter/03-08-05

### MPS LH2 Disconnect Flex Hoses





Presenter:
Joe Rodriguez
Organization/Date:

Orbiter/03-08-05

MPS LH2 Disconnect Flex Hoses



**LH2 SIDE** 

1/4 IN. MANIFOLD SENSE LINE 3/8 IN. PNEUMATIC SUPPLY LINE 3/4 IN. MANIFOLD REPRESS LINE



Presenter:
Joe Rodriguez
Organization/Date:
Orbiter/03-08-05





Presenter:
Joe Rodriguez
Organization/Date:
Orbiter/03-08-05

### PVD LH2 Disconnect Flex Hoses





Presenter:
Joe Rodriguez
Organization/Date:
Orbiter/03-08-05

### **OME Flex Hoses**





Presenter:
Joe Rodriguez
Organization/Date:
Orbiter/03-08-05

### **RCS** Flex Hoses





Presenter:
Joe Rodriguez
Organization/Date:
Orbiter/03-08-05

MC271-0085-1013

**Secondary O2 Supply** 

MC271-0085-1016

**Secondary GN2 Supply** 



# ECLSS O2/N2 Secondary Flex Hoses

#### STS-114 OPF ROLLOUT REVIEW

ECLSS BayFlex Hoses

Presenter:
Joe Rodriguez
Organization/Date:
Orbiter/03-08-05





Presenter:
Joe Rodriguez
Organization/Date:
Orbiter/03-08-05

### ECLSS Bay Flex Hoses (Airlock/EMU Hoses)





#### STS-114 OPF ROLLOUT REVIEW

# CORROSION INVESTIGATION Flex Hoses

| Presenter:         |
|--------------------|
| Joe Rodriguez      |
| Organization/Date: |
| Orbiter/03-08-05   |

<u>Concern #1:</u> Corrosion Pitting Might Contribute to Fatigue Failure of Flexible Hoses

- Vehicle History
  - •No Reports of Corrosion Contributing to Any Fatigue Failure on Flexhoses
  - One Report of Corrosion in a Vehicle Flexhose
    - •ECLSS Radiator Jumper Hose Minor Leakage Determined to Be As a Result of Stress Corrosion Cracking
    - No Evidence of Fatigue Initiation at SCC Defect
- Failure Analysis History
  - •60+ Failure Analysis Conducted on Flight Hoses
    - No Corrosion Noted (Except Radiator Jumper Hose Mentioned Above)
    - •Tooling Marks Were Noted but Were Not Contributory to Failures
  - Ground and Facilities System Flexhose Experience
    - Several Hoses Failed Via Pitting Corrosion Through the Wall
    - •Hoses Did Not Unzip, There Was No Evidence of Fatigue Initiating at the Pit
      - •GSE Hoses Do Not See Launch or Flight Vibrations 114rsflex.ppt 3/07/05 6:30 pm
      - •Do See Pressure Cycles and Ground Handling ORB-56.1.39

| _ |                    |
|---|--------------------|
|   | Presenter:         |
|   | Joe Rodriguez      |
|   | Organization/Date: |
|   | Orbiter/03-08-05   |

<u>Concern #1:</u> Corrosion Pitting Might Contribute to Fatigue Failure of Flexible Hoses

- Tooling Marks
  - Fatigue Sees Tooling Marks As Similar to Corrosion Pits
    - Both are localized stress concentrators
  - •Full Qual Level Test and Then Some Done on WSTF Fleet Leader No Failures
    - One Hose Was Selected for Destructive Analysis
      - •No Corrosion Detected, However Numerous Tooling Mark Defects Were Present on the Hose As Deep As 0.002"
      - •No Evidence of Fatigue Initiating at These Pit-like Defects
  - Tooling Marks Do Not Contribute To, Nor Interact With, LCF Failures
    - Past Failure Analysis Have Noted Pit-like Tooling Marks Adjacent to Fatigue Cracks
      - These Tooling Marks Did Not Contribute to the Eventual Low Cycle Fatigue Failure



# CORROSION INVESTIGATION Flex Hoses

| Presenter: Joe Rodriguez |
|--------------------------|
| Organization/Date:       |
| Orbiter/03-08-05         |

Concern #1: Corrosion Pitting Might Contribute to Fatigue Failure of Flexible Hoses

- Failure Mechanism
  - •<u>Low Cycle Fatigue</u> (LCF) Of Flex Hoses Creates Thousands Of Fine Cracks In The Exterior Surface of the Root, That Grow Together Into A Large Fatigue Crack Which Then Grows In Depth
    - •The Resulting Crack Can Cover A Large Portion Of The Periphery
    - To Date All LCF Failures Have Been Caught By Leak Testing Prior To Flight
    - •A Pit May Serve to Initiate One of Those Thousands of Microcracks Mentioned Above
    - •However, the Rest of the Thousands Still Need to Initiate to Join in
    - Result Is No Change to Low Cycle Fatigue Life Due to Pitting
  - •<u>High Cycle Fatigue</u> (HCF) Failures Occur On The Inner Surface Of the Crown
    - •HCF failures were experienced during the original development testing
    - There Have Been No HCF Failures of Flexhoses on Orbiter
    - •No Evidence of HCF on WSTF Fleet Leader Hose and on Other Qualification Tests With Pit-like Tooling Marks Present



# CORROSION INVESTIGATION Flex Hoses

| Presenter:         |
|--------------------|
| Joe Rodriguez      |
| Organization/Date: |
| Orbiter/03-08-05   |

Concern #1: Corrosion Pitting Might Contribute to Fatigue Failure of Flexible Hoses

- •Based upon observations from failure analysis, failure mechanism, and flight history
  - •Apparently, stresses from handling (LCF) are sufficiently high enough to drive crack initiation and propagation independently from corrosion pit stress concentrations
  - •Apparently, stresses form operation (HCF) are sufficiently low enough as not to significantly affect the operational fatigue life







# CORROSION INVESTIGATION Flex Hoses

| Presenter: Joe Rodriguez |
|--------------------------|
| Organization/Date:       |
| Orbiter/03-08-05         |

Concern #2: Corrosion, Itself, May Be a Threat Due to Perforation of Convolute Wall

- Vehicle History
  - •No significant corrosion problems in fluid system Flexhoses reported in 23 years of flight
  - •Over 200 flex hose inspections on vehicle hoses have been planned
    - •To date, inspection of over 100 on-vehicle hoses have found normal contamination no corrosion and no surface material loss
- Spares History
  - •Out of ~300 spare flexhoses inspected
    - •2 Flexhoses found with internal corrosion
    - •1 spare RCS hose had corrosion pitting that originated on the outer surface
    - •Level of corrosion was out of family as compared to other hoses
- Failure Analysis History
  - •Failure analyses of 60+ Orbiter flex hoses found 3 examples of pitting corrosion (The spare hoses mentioned above)
    - •Two spares had internal pitting corrosion up to 0.0014" deep
    - •One spare had pitting corrosion, through the wall, originating on the exterior



| _ |
|---|

- •Tooling Marks From Manufacturing Do Not Significantly Reduce Fatigue Life
  - Tooling Mark Defects Have Been Characterized
    - "Tool Marks Are Surface Irregularities That Are Generated by Tools During the Forming Process"
    - •Flexhose Manufacturers Have Limits on Tooling Marks of 0.002". This Is Standard Industry Practice. Our Fatigue Factors Cover Any Scatter in Failures Due to Tooling Marks
    - •Stress Concentration From Tooling Marks Vs. Corrosion Pits Expected to Be Similar
    - •Failure Analysis of Orbiter Flexhoses show no detrimental effects from tooling marks
- •Test Programs Have Demonstrated That Tooling Marks Do Not Effect Fatigue Life in Orbiter Environments
  - Original Flexhose Qualification Programs
    - Original Orbiter Certification Testing Included Tooling Marks No Failures
      - -Statistical Variability of Tooling Marks Limited to Size of Test Population
  - WSTF Fleet Leader Testing
    - •Full Qual Level Test and Then Some Done on WSTF Fleet Leader No Failures
    - One Flexible Hose Selected for Destructive Analysis
      - •No Corrosion Detected, However Numerous Tooling Mark Defects Noted on Hose As Deep As 2 Mils
      - No Evidence of Fatigue Initiating at These Pit-like Defects
  - Boeing Huntington Beach "Bend Radius Test"
    - •Full Qual Level Testing + Bend Radius Cycling No Failures.ppt 3/07/05 6:30 pm

